
Saini et al. Journal of Cotton Research            (2023) 6:16  
https://doi.org/10.1186/s42397-023-00154-x

REVIEW Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/.

Journal of Cotton Research

High day and night temperatures impact 
on cotton yield and quality—current status 
and future research direction
SAINI Dinesh K.1, IMPA S. M.1*   , MCCALLISTER Donna2, PATIL Gunvant B.3, ABIDI Noureddine4, RITCHIE Glen1, 
JACONIS S. Y.5 and JAGADISH Krishna S. V.1 

Abstract 

Heat waves, and an increased number of warm days and nights, have become more prevalent in major agricultural 
regions of the world. Although well adapted to semi-arid regions, cotton is vulnerable to high temperatures, par-
ticularly during flowering and boll development. To maintain lint yield potential without compromising its quality 
under high-temperature stress, it is essential to understand the effects of heat stress on various stages of plant growth 
and development, and associated tolerance mechanisms. Despite ongoing efforts to gather data on the effects 
of heat stress on cotton growth and development, there remains a critical gap in understanding the distinct influence 
of high temperatures during the day and night on cotton yield and quality. Also, identifying mechanisms and target 
traits that induce greater high day and night temperature tolerance is essential for breeding climate-resilient cot-
ton for future uncertain climates. To bridge these knowledge gaps, we embarked on a rigorous and comprehensive 
review of published literature, delving into the impact of heat stress on cotton yields and the consequential losses 
in fiber quality. This review encompasses information on the effects of heat stress on growth, physiological, and bio-
chemical responses, fertilization, cotton yield, and quality. Additionally, we discuss management options for mini-
mizing heat stress-induced damage, and the benefits of integrating conventional and genomics-assisted breeding 
for developing heat-tolerant cotton cultivars. Finally, future research areas that need to be addressed to develop 
heat-resilient cotton are proposed.
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Background
Cotton is exceptionally well-suited to meet the growing 
demands of our global population as a valuable source 
of fiber generating income and sustaining over 100 mil-
lion households (Fairtrade Foundation 2022). It is the 
most produced and utilized natural fiber world-wide, 
with an annual economic impact valued at approximately 
$600 billion (Khan et al. 2020). Cotton is also recognized 
as a food source, with about 65% of conventional cot-
ton products entering the food chain. This occurs either 
directly through food oils or indirectly via consumption 
of meat and milk from animals nourished with cotton-
seed meal and ginning by-products (Rogers et  al. 2002; 
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Sekhar and Rao 2011; Meyer 2014). Upland cotton (Gos-
sypium hirsutum) and cultivars derived from this spe-
cies are the most widely cultivated cotton in the world. 
Cotton is cultivated in more than 35 countries, cover-
ing approximately 34.1 million hectares, and produces 
around 120 million bales per annum (AOF 2022). India is 
the leading producer of cotton in the world, followed by 
China and the United States (USDA-ERS 2022). China is 
the world’s largest consumer of cotton, with an estimated 
annual consumption of around 7.60 million tons (Khan 
et al. 2020). Being the third largest cotton producer and 
the leading cotton exporter in the world, the US plays a 
key role in the global cotton market (USDA-ERS 2022). 
Many cotton-growing regions, including the US, are 
likely to experience warming above the global average, 
causing a potential decline in cotton yields by up to 40% 
by 2100 (Schlenker and Roberts 2009). Historical analy-
sis indicates that heat stress in the southwest US reduced 
cotton yields by 26% (Elias et al. 2018). In Arizona’s low 
desert, cotton seed yields are projected to reduce by 
40% and 51% by mid- (2036 to 2065) and late-century 
(2066 to 2095), respectively, compared with the baseline 
(1980–2005) (Ayankojo et al. 2020). The projected rate of 
decline in cotton seed yield with increasing temperature 
provides a compelling rationale for exploring key traits 
and mechanisms that will help breed heat stress resilient 
cotton for the future.

Temperature plays a vital role in the growth of cotton, 
with a critical threshold of 32  °C beyond which yields 
are adversely impacted (Schlenker and Roberts 2009). 
Studies indicate that with the current rate of increase in 
temperature (Supplementary Tables  1 and 2), the aver-
age global temperature is expected to increase by 1.5  °C 
by the mid-twenty-first century. This increase in mean 
temperature is attributed to an asymmetric increase in 
both maximum day and minimum night temperatures 
(Karl et  al., 1993). Historical evidence indicates a much 
faster rate of increase in minimum night temperatures 
than maximum day temperatures, thus narrowing the 
diurnal temperature range (Alexander et  al. 2006; Sill-
mann et  al. 2013; IPCC 2023). A faster rate of increase 
and frequent occurrence of warmer nights significantly 
reduced crop yields, including cotton (Loka and Ooster-
huis 2010; Khan et al. 2020). C3 crops like rice and wheat 
exhibited differential physiological responses to high day 
and night temperatures (Jagadish et  al. 2015; Shi et  al. 
2013; Bahuguna et al. 2015; Aiqing et al. 2018; Impa et al. 
2019). Similarly, in cotton, high day temperature (HDT) 
mainly affected reproductive development, resulting in 
reduced seed number and increased flower abscission 
leading to reduced fruit retention (Reddy et  al. 1992a, 
b; Brown and Zeiher 1998). Whereas high night tem-
perature (HNT) induced an increase in respiration that 

restricted carbohydrate supply into the sink resulting in 
lower fiber per seed (Soliz et  al. 2008). This differential 
mode of action under high day and night temperatures 
warrants the need to understand cotton responses under 
high day and night temperatures independently. In this 
review, heat/high-temperature stress refers to high day 
temperature unless explicitly stated as HNT or combined 
high day and night stress.

Researchers have attempted to comprehend the 
impacts of heat stress on cotton production (Reddy et al. 
1991; Hodges et al. 1993; Brown and Zeiher 1998; Zhao 
et  al. 2005; Pettigrew 2008; Cottee et  al. 2010), and to 
decipher the genetic architecture of key traits confer-
ring heat stress tolerance (Dabbert 2014; Pauli et al. 2016; 
Rani et al. 2022). However, the majority of studies aimed 
at evaluating the impact of heat stress on cotton have 
been conducted in controlled environments limiting their 
translational relevance to real-world agricultural con-
ditions (Reddy et  al. 1992a; Brown and Oosterius 2010; 
Snider et  al. 2009). Alternatively, field-based heat stress 
studies have been conducted using natural hot summers 
by altering the planting dates, which significantly alters 
the agronomy of the crop (Thompson et  al. 2022). Cot-
ton’s response to different levels of heat stress has been 
studied across scales, including the impact of heat stress 
on cotton growth and yield (Majeed et  al. 2021), adap-
tive mechanisms (Azhar et al. 2020; Ahmad et al. 2020), 
and breeding for heat stress tolerance (Singh et al. 2007; 
Salman et al. 2019a). However, there has not been a sys-
tematic synthesis of published research to determine the 
current status and identify hypothesis-based research 
questions that need to be addressed to safeguard cotton 
under future warmer scenarios.

Hence, the overarching objective of this review is to 
comprehensively synthesize the existing literature on the 
effects of high day, high night, and combined heat stress 
on cotton yield, fiber quality, and related traits. In addi-
tion, potential management strategies that can effectively 
mitigate heat stress-induced damage are discussed. The 
review will cover the current status, progress, and future 
prospects of breeding heat-tolerant cultivars, leveraging 
both conventional and genomics-assisted approaches.

Growth, physiological, and biochemical responses 
of cotton to heat stress
Cotton growth is negatively impacted at tempera-
tures ≥ 35  °C (Reddy et  al. 1991). The thermal kinetic 
window for optimum metabolic activity in cotton is 
23–32  °C and maximum photosynthesis is recorded 
at 28  °C (Burke et  al. 1985). High-temperature stress 
significantly limits seedling emergence and results in 
the development of suboptimal seedlings (Nabi and 
Mullins 2008; Raphael et  al. 2017). Cotton seedlings 
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exhibited maximum emergence with vigorous growth 
at 30  °C, genotypes with larger seed size and weight 
showed better growth, even at 40  °C, and no seedling 
emergence was observed at 50 °C (Raphael et al. 2017). 
Advanced cotton breeding lines exposed to com-
bined high day and night temperature regimes (20/15, 
30/20, 35/25, and 40/30 °C), showed a stronger growth 
at 35/25  °C and the growth was significantly limited 
at 40/30  °C (Virk et  al. 2021). Heat stress accelerates 
growth and promotes early maturation, but at the same 
time, it limits plants from achieving their full genetic 
potential (Reddy and Zhao 2005). With a 5  °C global 
temperature increase, the crop duration was reduced 
by up to 35 days from germination to maturity (Reddy 
et al. 1992a; Ahmad et al. 2020). Leaves are highly sen-
sitive to temperature variations during the early stage 
of seedling development, with leaves on three-week-old 
seedlings expanding six to eight times more at tem-
peratures of 28–30 °C compared with those at 20–21 °C 
(Reddy et  al. 1992b). High temperatures significantly 
reduce plant height, as well as the number of nodes per 
plant and sympodial branches per plant (Yousaf et  al. 
2023). This is likely due to a decrease in the internodal 
distance, chlorophyll content, and net photosynthe-
sis, leading to a reduction in photosynthate availability 
(Abro et al. 2022).

High-temperature stress stimulates the generation of 
reactive oxygen species (ROS), including hydroxyl radi-
cal (•OH), singlet oxygen (1O2), and hydrogen peroxide 
(H2O2), which can interfere with the normal function-
ing of metabolic and enzymatic pathways (Qamer et  al. 
2021). Increased accumulation of H2O2 in cotton geno-
types exposed to heat stress was negatively correlated 
with cotton seed yield, especially in a heat-sensitive gen-
otype (BH-306) (Majeed et  al. 2019; Yousaf et  al. 2023). 
To mitigate the detrimental effects of ROS, cotton plants 
produce various enzymatic [such as superoxide dis-
mutase (SOD), peroxidases (POD), catalase (CAT)] and 
non-enzymatic antioxidants [such as carotenoids, flavo-
noids, ascorbate, and tocopherols] under heat stress that 
act as scavengers or detoxifying agents (Gür et al. 2010; 
Sekmen et al. 2014; Qamer et al. 2021). In cotton plants 
exposed to high-temperature stress, SOD activity was 
reduced at 45 °C, CAT activity increased at 45 °C, while 
POD activity increased at 38 °C and ascorbate peroxidase 
(APX) activity increased at 38 and 45 °C (Gür et al. 2010). 
In another study, Sekmen et al. (2014) observed that the 
heat stress sensitivity of the cultivar, 84-S, was associ-
ated with decreased activities of CAT and POD, leading 
to increased H2O2 accumulation and oxidative stress-
induced lipid peroxidation. On the other hand, the higher 
heat stress tolerance of the cultivars, M-503 and BH-302, 
was linked to their ability to maintain constitutive 

activities of SOD and APX and induce CAT and POD 
leading to lower accumulation of H2O2 and higher cotton 
seed yield (Yousaf et al. 2023).

High-temperature stress-induced reduction in pho-
tosynthesis has been observed in several crops, includ-
ing cotton (Aiqing et  al. 2018; Mercado Álvarez et  al. 
2022; Saleem et al. 2021; Yousaf et al. 2023). Optimal net 
photosynthesis in cotton is observed at 28  °C and a sig-
nificant decline in photosynthesis and photosynthetic 
pigments are observed beyond 35  °C (Crafts-Brand-
ner and Salvucci 2000; Van der Westhuizen et  al. 2020; 
Yousaf et  al. 2023). Compared with the optimum tem-
perature, a heat stress of 42  °C reduced photosynthesis 
in some cotton genotypes by 30%, electron transport by 
12%, and membrane integrity by 23% (Cottee et al. 2012). 
High temperatures during the vegetative stage damage 
leaf photosynthesis components, thereby limiting CO2 
uptake and translocation of assimilates to developing 
organs (Pettigrew and Gerik 2007). Subtending leaves are 
the primary source of carbohydrate for boll development, 
and under heat stress, lower quantum yield and chloro-
phyll content in these leaves were closely associated with 
lower fertilization efficiency (Snider et  al. 2009). Photo-
synthesis in subtending leaves of the thermotolerant gen-
otype, VH260, was unaltered under heat stress whereas, 
the thermosensitive genotype (ST4554) exhibited a 39.5% 
reduction (Snider et al. 2010). Photosystem II is a highly 
heat-sensitive component in the photosynthetic appara-
tus and heat-induced damage to PSII disrupts electron 
transport and increases chlorophyll fluorescence, thereby 
leading to photoinhibition (Salvucci and Crafts-Brandner 
2004; Pettigrew and Gerik 2007).

The balance between assimilate production and par-
titioning for seed filling (source strength) and the effi-
cient use of these assimilates for reproductive organ 
growth and seed development (sink strength) known 
as the source-sink balance is a crucial factor that deter-
mines cotton yield and fiber quality (Nie et al. 2020; Qin 
et  al. 2023). Environmental stresses disrupt the source-
sink balance by affecting source capacity and restricting 
assimilate transport to fruiting branches in cotton (Loka 
et  al. 2020). The conversion of starch to sucrose and its 
transport into the sink is especially important as cotton 
fibers are made up of cellulose, a polysaccharide formed 
by the interlocking of thousands of β-(1, 4)-D-glucose 
units, whose main carbon source is sucrose (FitzSimons 
and Oosterhuis 2016). Enhanced respiration under HNT 
significantly reduces ATP levels indicating greater use 
of energy pools (Frantz et  al. 2004). Sucrose and hex-
ose levels remained unaltered in cotton plants exposed 
to acute HNT, whereas sucrose levels were significantly 
reduced under chronic HNT stress (Loka and Oosterhuis 
2010). To improve cotton seed yields under heat stress, 
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it is essential to optimize source-sink relationships by 
improving photo assimilate production and transport to 
sink tissues and enhancing the use of these assimilates by 
sink tissues (Qin et al. 2023). Figure 1 provides an over-
view of the impacts of elevated day and night tempera-
tures on key traits in cotton.

Reproductive failure—the major cause of heat 
induced yield loss
The reproductive success of cotton is negatively affected 
with temperatures above 28–30  °C (Oosterhuis and 
Snider 2011; Fig.  1). Cotton is highly sensitive to heat 
stress during the first five weeks of flowering and boll 
development (Oosterhuis 1990). Heat stress hastens 
reproductive development process and thereby reduces 
the time required for formation of square, flower, and boll 
maturity (Reddy et al. 1997). Heat stress induces several 
abnormalities in cotton flower development including 
partial/unopened small flowers, asynchronous develop-
ment of female and male reproductive organs (anther 
and pistil tissues), poor anther dehiscence, shorter fila-
ments, improper pollen germination, reduced pollen 
tube growth, and improper fertilization (Brown 2008; 

Burke et al. 2004; Snider et al. 2009 & 2011; Song et al. 
2015; Loka and Oosterhuis 2016a, b; Masoomi‐Aladizgeh 
et  al. 2021). Microgametophyte development immedi-
ately after meiosis (i.e., tetrad formation from microspore 
mother cells) is highly sensitive to heat stress (Meyer 
1966). Similarly, transient exposure of developing male 
gametophytes to 40  °C during tetrad or binucleate stage 
significantly damaged male gametophyte development 
and had pronounced negative effect on pollen viability 
in cotton (Masoomi‐Aladizgeh et  al. 2021). HNT stress 
(29 - 31 °C) had a greater impact on pollen development, 
leading to male sterility, compared with high day temper-
ature stress (39 - 41 °C) (Khan et al. 2020). Pollen devel-
opment relies on tightly regulated storage lipids, fatty 
acids, and jasmonic acid metabolism, which are highly 
sensitive to HNT.

Intra-plant variability is noticed for pollen germination 
and viability under heat stress conditions with pollens in 
flowers at the lower branches exhibiting lesser sensitivity 
to high temperature stress compared with flowers in the 
top branches (Rehman et al. 2021b). In cotton, maximum 
pollen germination was recorded at 28  °C with a reduc-
tion noticed as temperatures increased over 28 °C (Burke 
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2011) and pollen completely failed to germinate at 37 °C 
(Burke et  al. 2004). Similarly, the optimum temperature 
range for maximum pollen tube growth was 28 - 32  °C, 
the tube lengths declined significantly at 34 °C and ceased 
completely at 43 °C (Burke et al. 2004; Kakani et al. 2005). 
Pollen tube growth is also known to have a strong cor-
relation with boll retention (Liu et  al. 2006). Of all the 
reproductive traits, pollen tube growth was more sensi-
tive to moderately high temperatures (34.6  °C) under 
field conditions than other reproductive processes like 
pollen germination and fertilization (Snider et al. 2011). 
Song et al. (2015) reported that temperatures exceeding 
35  °C during microsporogenesis in upland cotton had 
significant effects on the developmental stages from the 
sporogenous cell to tetrad. Considerably less informa-
tion has been documented on the heat stress impacts on 
female gametophyte development compared with male 
reproductive organ development. In addition to pollen 
germination and tube growth, pollen-pistil interaction is 
an important process that is greatly affected under high 
temperatures (Snider and Oosterhuis 2012). A decline 
in ovule number and fertilization efficiency was noticed 
in cotton plants exposed to 38/20  °C prior to flowering 
and was significantly associated with enhanced oxida-
tive stress and reduced soluble carbohydrate and ATP 
content in the pistil (Snider et al. 2009). One of the main 
causes of abnormal pollen germination and fertiliza-
tion is the decline in energy reserves such as carbohy-
drates and ATP concentrations essential for reproductive 
growth (Snider et  al. 2009). Heat stress induced reduc-
tion in carbohydrate supply in pistil profoundly hindered 
pollen tube growth through style even under moderately 
high temperatures (Snider et al. 2011). Pistils of thermo-
tolerant cotton genotype with higher antioxidant enzyme 
activity also had higher levels of total and water-soluble 
calcium and ATP content than the sensitive genotype 
(Snider et  al. 2011). Conversely, in a study by Loka and 
Oosterhuis (2016a), the pistil antioxidant metabolism was 
observed to be largely unresponsive to the elevated night 
temperature stress, indicating a differential response of 
cotton plants to HDT and HNT stresses. Under elevated 
night temperatures cotton pistils exhibited an increase 
in the accumulation of glucose, sucrose, and starch con-
centrations than control, which was mainly attributed 
to disruptions in sucrose and starch degradation (Dinar 
and Rudich 1985). On the contrary cotton pistils exposed 
to high day temperature stress recorded a reduction in 
sucrose concentration (Snider et al. 2009).

Flower and square abscission under high temperatures 
above 30 °C is one of the primary causes of yield reduc-
tion in cotton (Reddy et  al. 1991). Square abscission 
increases significantly beyond 35  °C leading to nearly 
zero boll retention at 40  °C (Hodges et al. 1993). Severe 

square loss, and flower abortion 3–5  days after bloom 
were the main causes of significant yield losses in cotton 
(Reddy et  al. 1992c; Brown 2008). Both HDT and HNT 
stresses restricted photo-assimilate supply to developing 
fruits resulting in a lower accumulation of total soluble 
carbohydrate in reproductive tissues and young bolls 
leading to improper fertilization and boll abortion (Zhao 
et al. 2005; Snider et al. 2009; Najeeb et al. 2017).

However, the physiological mechanisms of increased 
square abscission under high-temperature stress in cot-
ton remain largely unclear. Loka and Oosterhuis (2016b) 
found that HNT negatively affects cotton flower bud pro-
duction by disrupting carbohydrate metabolism in flower 
buds due to insufficient glutathione reductase response. 
HNT stress showed more pronounced impact on fatty 
acid and jasmonic acid metabolism within the cotton 
anthers, thereby inducing higher male sterility than HDT 
(Khan et al. 2020).

Heat stress‑induced reduction in yield and yield 
components
Though cotton is a tropical crop adapted to be produc-
tive under a wide range of environments, high tempera-
tures at critical growth stages significantly reduce its 
yield and productivity (Fig. 1). Cotton is less sensitive to 
heat stress at the vegetative stage but flowering and boll-
development are the most sensitive stages (Reddy et  al. 
1997, 1999; Snider and Oosterhuis 2012). A projected 
4  °C increase in average growing season temperatures 
is predicted to reduce cotton yields by 9% in the Missis-
sippi Delta (Reddy et al. 2002). The year-to-year variabil-
ity in cotton yield is attributed to modern cultivars being 
more sensitive to environmental stresses including high 
temperatures, than obsolete cultivars (Brown and Oost-
erhuis 2010). Heat stress significantly reduced yield and 
yield-related parameters including lint yield, boll weight, 
boll number, boll retention, seed yield, seed number per 
boll, and ginning percentage in cotton (Supplementary 
Table  3; Reddy et  al. 1991; Hodges et  al. 1993; Brown 
and Zeiher 1998; Zhao et al. 2005; Pettigrew 2008; Cot-
tee et al. 2010; Salman et al. 2019a, 2019b; Xu et al. 2020; 
Abro et  al. 2022; Yousaf et  al. 2023). Cotton exposed to 
HDT stress exhibited intra-plant variability with bot-
tom branches recording better physiological, morpho-
logical, and yield traits except for boll weight (Rehman 
et  al. 2021b). Combined HDT and HNT increased the 
severity of damage compared with HDT or HNT stress 
independently (Supplementary Table  3). A controlled 
environment study resulted in “0” boll retention under 
combined HDT and HNT stress (40/32  °C) indicating 
a complete abscission of all the squares compared with 
control (30/22 °C) (Reddy et al. 1992c, 1999; Supplemen-
tary Table  3). Under field conditions, combined stress 
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induced up to 50% reduction in cotton seed yield (Cot-
tee et al. 2010; Supplementary Table 3). A mild tempera-
ture increase of only 1  °C resulted in a significant (10%) 
decrease in lint yield which was primarily attributed 
to a 6% reduction in boll mass, with a concomitant 7% 
reduction in the number of seeds per boll (Pettigrew 
2008). Studies on the impact of heat stress on yield and 
yield components in cotton either looked at the effect of 
HDT or combined HDT and HNT, whereas the effect of 
HNT stress is seldom studied with only one study report-
ing a 2%∼12% reduction in lint yield under HNT stress 
(27 - 33 °C) compared with the control (21 - 24 °C) (Soliz 
et al. 2008; Supplementary Table 3).

Heat stress‑induced alteration in cotton fiber 
quality traits
Cotton is primarily cultivated for its fiber which is uti-
lized in textile production. A single seed can generate 
anywhere from 10 000 to 20 000 fibers under ideal tem-
perature conditions (Seagull and Alspaugh 2001). An 
average daily temperature of 26  °C is crucial for proper 
fiber development and temperatures above 35  °C can 
have significant negative impact on fiber quality traits 
such as length, strength (especially during cell wall thick-
ening), uniformity, elongation, maturity, micronaire, 
and lint percent (Manan et al. 2022; Rahman et al. 2006; 
Pettigrew 2001, 2008; Reddy et  al. 1991; Fig.  1). Cotton 
fiber majorly consists of cellulose (85% of fiber composi-
tion) and cellulose synthesis is optimally achieved within 
a temperature range from 25 to 30  °C, with a reduction 
in synthesis observed beyond this range (Roberts et  al. 
1992). Under stress conditions the reduction in cellulose 
synthesis is believed to occur through a combination of 
decreased activities of sucrose metabolism enzymes, 
as well as a preferential conversion of UDP-glucose to 
callose rather to cellulose (Chen et  al. 2017a). Sucrose 
is not only the main substrate for cellulose synthesis, 
but also contributes to fiber elongation through turgor 
pressure (Ding et al. 2021; Tian et al. 2013). Hence, any 
modification in sucrose concentration directly impacts 
cellulose synthesis. Excessive temperatures exceeding 
35 °C or 40 °C diminish cotton’s photosynthetic capacity, 
reducing sucrose production (Crafts-Brandner and Sal-
vucci 2000). Under unfavourable conditions, such as high 
temperatures, carbohydrate assimilation is inhibited, 
leading to a reduction in seed number, size, the  num-
ber of fibers per seed, and ultimately, yield (Arevalo 
et  al. 2004). Under elevated temperatures, fiber sucrose 
content was reduced mainly due to decreased source 
strength and lower expression of the sucrose trans-
porter gene, GhSUT-1 (Chen et al. 2017a). On the other 
hand, cotton varieties with high sugar content in fib-
ers often exhibit shorter fiber lengths, as an increase in 

sugar content stimulates the generation of ROS, which 
promotes fiber initiation resulting in the production of 
more fibers. In addition, an elevated level of ROS also 
stimulates the biosynthesis of the secondary cell wall, 
which arrests the fiber elongation process and results in 
the production of thinner and shorter fibers (Ding et al. 
2021).

The fiber elongation stage begins with flowering and 
continues for up to 25 days, while the secondary cell wall 
thickening stage extends from 20 - 60 days after flowering 
and varies based on varieties and temperature conditions 
or cumulative heat units (Bradow and Davidonis 2010). 
Fiber elongation requires a lower temperature than that 
is needed for boll development (Pettigrew 2001), and 
the micronaire tends to deteriorate above temperature 
regimes of 28-33 °C (Pettigrew 2008; Reddy et al. 1999). 
The sensitivity of fiber to temperature varies with its 
developmental stages, with the early stages of fiber elon-
gation being more temperature-sensitive than the later 
stages (Gipson and Joham 1969; Xie et  al. 1993). Night 
temperatures also play a vital role in fiber quality, with the 
optimal temperature being 15-21 °C (Abbas and Ahmad 
2018), and temperatures above 21 °C or below 15 °C sig-
nificantly decreases fiber length (Gipson and Joham 1969; 
Pettigrew 2008; Zhang et al. 2012). HNT stress increases 
respiration, leading to a restricted carbohydrate supply 
and thereby lowering fiber weight (Soliz et  al. 2008). It 
was also demonstrated that heat-tolerant genotypes not 
only exhibit remarkable stability in yield but also produce 
superior quality fibers compared with the heat-sensitive 
genotypes under diverse environmental conditions (e.g., 
Azhar et al. 2009: Manan et al. 2022). With the predicted 
increase in both day and night temperatures, it is impera-
tive to fill the gaps in our understanding of the different 
aspects of the fiber quality that determine the economic 
value of the crop.

Chamber versus field experiments to screen 
for heat stress tolerance in cotton
Over the last two decades, considerable information 
has been generated by the cotton research community 
on heat stress impacts on physiology and yield. Litera-
ture collected (a total of 110 studies) browsing through 
various websites/online repositories, including Google 
Scholar (https://​schol​ar.​google.​com/) and Web of Sci-
ence (https://​www.​webof​scien​ce.​com/​wos/​woscc/​basic-​
search) indicated that heat stress impact on cotton was 
mainly quantified under controlled environments using 
either growth chambers or glass houses where tempera-
ture was artificially controlled (Fig.  2; Supplementary 
Table 4; Birrer et al. 2021; Demirel et al. 2016; Khan et al. 
2020; Loka et al. 2010, 2016a, 2016b, 2020; Manan et al. 
2022; Masoomi‐Aladizgeh et al. 2021; Mishra et al. 2017; 

https://scholar.google.com/
https://www.webofscience.com/wos/woscc/basic-search
https://www.webofscience.com/wos/woscc/basic-search
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Najeeb et al. 2017; Raphael et al. 2017; Van der Westhui-
zen et al. 2020; Xu et al. 2020). Controlled environment 
studies allow for precise temperature control and experi-
mental conditions but may not fully reflect the com-
plexities of real-world field conditions. In field-based 
studies (39 out of 110), staggered sowing and/or irriga-
tion management were used to synchronize the targeted 
developmental stage with high natural temperatures, i.e., 
summers (e.g., Abbas and Ahmad 2018; Abro et al. 2015, 
2022; Aslam et al. 2022; Emine et al. 2012; Li et al. 2020; 
Ma et al. 2021; Mercado Álvarez et al. 2022; Rani et al. 
2022; Saleem et  al. 2021; Thompson et  al. 2022). These 
studies aimed to bridge the gap in information between 
controlled environments and field conditions, recogniz-
ing the importance of understanding cotton responses 
to heat stress under more realistic field conditions. For 
instance, field trials conducted over two consecutive cot-
ton growing seasons revealed that heat stress exhibits a 
substantial detrimental effect on several agro-morpho-
logical, physio-chemical, and fiber-related parameters in 
various cotton genotypes (Yousaf et al. 2023).

A systematic screening for heat tolerance in cotton 
using field-based heat tents or structures where tem-
perature can be controlled and monitored accounted 
for the lowest proportion (11 out of 110) of studies 
(Fig.  2; Supplementary Table  4; Soliz et  al. 2008; Cot-
tee et  al. 2010; Chen et  al. 2017a, 2017b; Gao et  al. 
2021; Zafar et  al. 2022). Soliz et  al. (2008) used heat 
shelters (4 m wide × 5 m long x 1 m tall) and observed 
no significant effect of HNT on carbon balance and 
fiber weight per seed, which was mainly attributed to 

inadequate replications, shorter period of stress (4  h 
per day for 1 and 2  weeks) and single cultivar ‘Sure-
grow 215BR’. In contrast, heat stress imposed by using 
polyethylene UV-stabilized film (2.8  m long × 2.8  m 
wide × 2.6  m tall) over the crop canopy for one week, 
induced significant negative impacts on cotton (Cottee 
et  al. 2010). However, under small field tents/enclo-
sures, the humidity builds up, creating a more stressful 
environment from temperature and humidity interac-
tions, leading to confounding impacts on the overall 
physiology and molecular responses, in addition to 
increasing crop vulnerability to pest/disease incidence 
(Bahuguna et al. 2015).

Further, only a few studies (8 out of 110) investigated 
the effects of heat stress on cotton under both controlled 
and natural (field) conditions (Fig.  2; Azhar et  al. 2009; 
Burke et  al. 2015; Sarwar et  al. 2018, 2022; Wu et  al. 
2014). This comparative approach is helpful for a com-
prehensive understanding of heat stress responses in cot-
ton across scales, which provides insights into cotton’s 
adaptability and potential for improved heat stress toler-
ance. For instance, in a recent study, Sarwar et al. (2022) 
investigated the impact of varying temperature regimes 
on the medium heat-tolerant cotton variety, AA-802, 
across three reproductive stages (squaring, flowering, 
and boll formation) under both glasshouse and field con-
ditions. Heat stress increased relative cell injury, total sol-
uble proteins, reactive oxygen species, and reduced the 
total number of bolls per plant, the number of sympodial 
branches per plant, and fiber quality traits under both 
glasshouse and field environments (Sarwar et al. 2022).

Fig. 2  Pie chart illustrating the distribution of published studies evaluating the impact of heat stress on cotton across different scales
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Combined heat and water‑deficit stress
Heat and water-deficit stresses often occur simultane-
ously under natural field conditions (Mittler 2006) and 
heat stress is further exacerbated under water-limited 
conditions. Plant responses under combined heat and 
drought stress have been strikingly different compared 
with individual stresses. The detrimental effects of com-
bined heat and water-deficit stress on the growth and 
development of cotton are emphasized in several pub-
lished studies (Hejnák et  al. 2015; Singh et  al. 2018; Li 
et al. 2020; Gao et al. 2021; Hu et al. 2022, 2023; Iqbal 
et  al. 2017). However, understanding the combined 
stress impacts has received considerably less attention 
than the individual stresses. Plants tend to close their 
stomata soon after exposure to water deficit condi-
tions, which helps reduce transpiration water loss but 
also lowers the intercellular CO2 concentration, result-
ing in stomatal or diffusional limitation to photosynthe-
sis (Chaves et  al. 2003). The reduction in transpiration 
further lowers transpiration cooling and amplifies can-
opy temperatures, impeding photosynthesis (Carmo-
Silva et al. 2012). In a recent study, when the changing 
trends of both elevated temperature and drought effects 
aligned, there was a more pronounced decrease in pho-
tosynthetic rate, RuBP (ribulose-1,5-bisphosphate), and 
starch content compared with single stress exposures 
(Hu et  al. 2023). The changes in antioxidant mecha-
nisms, ROS scavenging, carbohydrate content, and 
yield components in cotton exposed to combined heat 
and drought stress were similar to drought stress (Iqbal 
et al. 2017; Loka et al. 2020). Living organisms including 
plants have developed several protective mechanisms 
to provide thermo-tolerance and one such acquired 
heat resistance mechanism is the accumulation of heat 
shock proteins (HSPs) (Rehman et  al. 2021a). Similar 
polypeptides were accumulated in cotton grown under 
dryland conditions in the field and cotton exposed to 
40  °C under controlled environment growth chambers 
indicating that both heat and water-deficit stresses have 
similar endogenous protection mechanisms and pro-
duce HSPs (Burke et al. 1985). Under moderate soil rela-
tive water content, the heat-sensitive genotype (Sumian 
15) experienced a yield reduction of 23 to 35%, while the 
heat-tolerant genotype (PHY370WR) showed a reduc-
tion of 8% to 13% (Gao et  al. 2021). However, under 
low soil relative water content, the reductions intensi-
fied, with 44 to 54% in heat-sensitive and 37% to 43% 
in the heat-tolerant genotypes (Gao et  al. 2021). These 
results indicate that water-deficit stress exacerbated 
heat stress. Under severe drought, an elevated temper-
ature had a negative effect on cottonseed protein syn-
thesis, whereas under mild drought, it had a positive 
effect (Xu et al. 2022). Combined elevated temperature 

and drought stresses during the cotton fiber thickening 
stage inhibited fiber biomass accumulation and cellu-
lose synthesis (Hu et al. 2022). Heat and or water-deficit 
stress during the fiber cuticle wax deposition in cotton 
decreased fiber wax content under individual stresses 
but increased it under combined stress (Birrer et  al. 
2021). In another study, simultaneous exposure of cot-
ton to elevated temperature and drought stress had sig-
nificant interaction effects on fiber length, strength, and 
micronaire, depending on cultivars and years. The nega-
tive impacts of drought on fiber length were exacer-
bated by elevated temperature but on the contrary, both 
fiber strength and micronaire were increased under 
elevated temperature (Gao et  al. 2021). However, the 
authors also hypothesize that extended periods of ele-
vated temperature would have negative effects on fiber 
strength and miconaire (Gao et  al. 2021). A reduction 
in fiber length under elevated temperatures was mainly 
due to a shortened fiber elongation period, whereas 
drought stress disrupts the balance of turgor pressure in 
the fiber cells, leading to shorter fiber length (Ruan et al. 
2007). A reduction in seed number per boll and shorter 
fibres under elevated temperature results in more avail-
able assimilates for fiber development, further increas-
ing fiber strength and micronaire (Pettigrew 2008).

Osmoprotectants and antioxidants are widely rec-
ognized to play a vital role in the adaptive response to 
the synergistic impact of drought and heat stresses 
(Fig.  3). The accumulation of proline in cotton geno-
types occurred to varying extents under drought and 
combined drought and heat stress conditions (De 
Ronde et al. 2000). In one study, the proline content in 
the drought-sensitive genotype (84-S) increased under 
drought, heat, and combined drought and heat stress 
conditions, though not to the levels observed in the tol-
erant genotype (M-503), highlighting the importance of 
this compatible solute in cotton’s stress tolerance (Sek-
men et  al. 2014). However, the activities of some anti-
oxidant defense enzymes, particularly SOD, CAT, and 
APX, were suppressed in both genotypes when exposed 
to combined drought and heat stresses compared with 
drought stress alone (Sekmen et al. 2014).

Management options to minimize heat 
stress‑induced damages
The unpredictable alterations in climatic conditions 
pose a challenge to the effective implementation of 
management options to minimize heat stress-induced 
damages. Early planting to allow plants to complete 
their critical growth stages (e.g., peak flowering) before 
the onset of extremely high temperatures in the sum-
mer is considered a good heat escape strategy (Killi and 
Bolek 2006). Cotton sown post-recommended planting 
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time is vulnerable to heat stress episodes, and altering 
the sowing time impacts growth, lint yield, and photo-
synthate supply to reproductive organs (Mumtaz et al. 
2015; Carmo-Silva et  al. 2012; Killi and Bolek 2006; 
Mercado Álvarez et al. 2022; Rahman et al. 2006). The 
other option would be to grow early maturing varie-
ties, which would complete the critical growth stages/
life cycle before the onset of high temperatures (Fig. 3; 
Ahsan et  al. 2017). However, with both these options 
the effectiveness of escape cannot be guaranteed as the 
occurrence of heat spikes are unpredictable and could 
well impact the crop negatively, even though they are 
planted early or with a short-duration variety.

High-day temperature stress-induced acceleration in 
transpiration and evaporation rates result in increased 
water loss from the plant and soil, respectively (Sadok 
et al. 2021). To alleviate the negative impact of elevated 
temperatures, proper irrigation management must 
be implemented, taking into account the plant’s water 
requirements and canopy temperature monitoring. 
Insufficient water availability can lead to the modula-
tion of stomatal conductance by the plants, causing 
water stress in cotton. In such circumstances, irriga-
tion is necessary to maintain a cooler canopy. Further, 
in dry climates where crops rely solely on rainfall and 
soil moisture levels are low, adjusting the row spac-
ing can enhance cotton lint yield (Echer and Rosolem 

2015). For instance, in a previous study, it was observed 
that planting with an extended growing season, and 
lower plant density (or wider spacings) enhanced fiber 
yields. In contrast, late planting with limited irrigation 
and narrower spacings increased seed yields (Echer and 
Rosolem 2015).

Application of synthetic and/or natural growth reg-
ulators through foliar sprays (EL Sabagh et  al. 2022), 
exogenous compatible solutes (Ahmad et  al. 2014), 
signaling molecules (Sarwar et  al. 2019; Larkindale 
and Huang 2004), and foliar nutrient spray (Sarwar 
et al. 2022; Saleem et al. 2018) minimizes the negative 
effects of environmental factors on cotton. Phytohor-
mones, such as gibberellic acid, auxin/indole acetic 
acid, abscisic acid, ethylene, cytokinins, brassinoster-
oids, strigolactone, salicylic acid, and jasmonic acid, are 
critical molecular players in controlling plant growth 
in response to various abiotic stress stimuli, includ-
ing heat stress (Jha et al. 2022). These phytohormones 
play a crucial role in various cellular, physiological, and 
developmental processes such as osmolyte accumula-
tion, stomatal movement, photosynthesis, and pollen 
development, as well as reducing ROS accumulation 
thereby imparting heat stress tolerance (Sharma et  al. 
2019). Although phytohormones have seldom been uti-
lized in cotton to manage heat stress, their beneficial 
effects on other important cotton traits, such as fiber 

Fig. 3  Various adaptive strategies adapted by cotton plants to overcome high temperature stress induced damage
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development, have been well-established under opti-
mal conditions (Wang et al. 2020). Signaling molecules, 
such as hydrogen peroxide (H2O2), can effectively acti-
vate the defense system in plants and improve leaf CAT, 
SOD activity, chlorophyll contents, net photosynthetic 
rate, boll weight, the  number of sympodial branches, 
and fiber quality components in cotton under heat 
stress (Larkindale and Huang 2004; Sarwar et al. 2019).

Elevated temperatures reduce nutrient acquisition, 
utilization, and partitioning. Foliar application of macro 
and/or micronutrients is known to stimulate the plant 
defense system and strengthen physiological functions 
under heat stress (Raghunath et  al. 2021). For instance, 
Sarwar et  al. (2019) demonstrated that the exogenous 
application of macro and micronutrients (K-1.5%, 
Zn-0.2%, and B-0.1%) minimized the adverse effects of 
HDT on cotton. Recently, Sarwar et  al. (2022) reported 
that foliar application of potassium (K) and zinc (Zn), 
followed by boron (B), increased the relative water con-
tent, total soluble proteins, the number of sympodial 
branches per plant, fiber, the number of bolls per plant, 
fiber length, fineness, and strength. Furthermore, foliar 
sprays of K, Zn, and B reduced H2O2 under high-tem-
perature regimes (45/300 C and 38/240 C) compared with 
the optimal temperature regime (32/20  °C). This reduc-
tion in H2O2 indirectly resulted in good fiber quality and 
improved yield component traits by reducing the relative 
cell injury and membrane leakage (Sarwar et  al. 2022). 
Numerous macro- and micronutrients have the poten-
tial to elicit thermotolerance in cotton by enhancing bio-
chemical and membrane stability, augmenting yield, and 
improving fiber quality through water-mediated inter-
actions. These nutrients can be administered prior to 
exposure to high-temperature stress for optimal results. 
Further investigations are needed to elucidate the pre-
cise mechanisms through which these nutrients facili-
tate thermotolerance signaling under high-temperature 
stress, particularly in relation to the synthesis of heat-
shock proteins mediated by K and Zn. Apart from these 
management options, plants also employ different adap-
tive strategies to overcome heat stress induced damage 
(Fig. 3).

Breeding for heat‑resilient cotton
Conventional breeding strategies
Developing high-yielding, climate-resilient cotton cul-
tivars that can thrive in changing climatic conditions is 
the primary goal of current cotton breeding programs. 
Conventional breeding of heat-tolerant cotton has pri-
marily relied on selection, with the most generalized 
approach of selecting genotypes for heat tolerance by 
growing breeding materials in hot target production 
environments and identifying genotypes with a higher 

yield (Majeed et al. 2021). Several studies on the identifi-
cation of heat stress tolerant genotypes from the available 
gene pool have been published (Aslam et al. 2022; Asha 
and Lal 2013; Zafar et al. 2022; Singh et al. 2018; Demirel 
et al. 2016; Abro et al. 2015, 2022; Wu et al. 2014; Emine 
et al. 2012; Iqbal et al. 2017). Cotton breeding programs 
are also increasingly utilizing wild, exotic, and distant 
relatives (including G. herbaceum, G. arboreum, G. bar-
badense,  and G. raimondii) because of their distinctive 
traits that are associated with abiotic stress tolerances 
(Bibi et al. 2010). However, there are multiple challenges 
such as genetic incompatibility, hybrid sterility, ploidy, 
climbing growth habit, photoperiodism, and agronomic 
issues that arise with gene transfer from wild to domesti-
cated species (Mammadov et al. 2018).

Identification/selection of appropriate traits that can 
improve stress tolerance is a crucial initial step in any 
breeding program. Targeting traits including cell mem-
brane thermostability, trichome size, stomatal conduct-
ance and size, chlorophyll content, canopy temperature, 
and reproductive performance that are closely linked to 
plant adaptation to warmer environments may allow for 
accelerated  genetic gain in cotton yield (Ahmad et  al. 
2020; Abro et al. 2015, 2022). The next step after finding 
a suitable trait is to transfer it to an elite background or 
to selectively purify the selected plant. The most popu-
lar conventional breeding techniques in cotton for this 
purpose include pedigree breeding, single plant selec-
tion, and bulk selection (Percy 2003). These methods 
can be supplemented with advanced tools for rapid and 
precise screening and improved genetic gain (Tokatlidis 
et  al. 2011). The utilization of cutting-edge genomics 
and biotechnological approaches has increased as cotton 
production faces diversified challenges from changing 
climates.

Molecular breeding
Advances in plant genomics have the potential to 
enhance our comprehension of the genetics underly-
ing the key traits and provide molecular or DNA-based 
markers that could accelerate genetic improvement 
in crops. Researchers have used quantitative trait loci 
(QTLs) mapping and genome-wide association studies 
(GWAS) to identify QTLs/genes and markers associ-
ated with various important traits in cotton (Dabbert 
2014; Ma et al. 2021; Pauli et al. 2016; Rani et al. 2022). 
To date, three studies have examined QTL mapping for 
heat tolerance, with Dabbert (2014) identifying 138 QTLs 
for eight heat-responsive traits, including cotton seed 
yield, lint yield, and quality traits using two recombinant 
inbred line (RIL) populations. In another study, Pauli 
et  al. (2016) used a high-throughput plant phenotyp-
ing (HTPP) system to identify QTLs for leaf area index, 
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normalized difference vegetation index, canopy tempera-
ture, and canopy height, with individual QTL explaining 
phenotypic variation ranging from 4.35% to 12.42%. Simi-
larly, Rani et al. (2022) evaluated an F2 population derived 
from a cross between a heat-tolerant genotype MNH-
886, and a heat-sensitive genotype MNH-814, and identi-
fied 17 QTLs associated with various morphological and 
yield traits with individual QTL explaining phenotypic 
variation ranging from 7.76% to 36.62%. Among these, 
the major QTLs, such as qFSHa1 and qFSha2, explained 
35.98% and 36.62% of the phenotypic variations, respec-
tively, for first sympodial node height. Additionally, the 
QTL, qTNSa3, was responsible for explaining 16.93% 
of the phenotypic variation in the total number of sym-
podes, while qNOB1 and qTNB1 explained 21.52% and 
17.67% of the phenotypic variation in the length of the 
bract and total number of buds, respectively. These major 
QTLs hold the potential as targets for selective breed-
ing approaches aimed at developing heat-tolerant cotton 
cultivars.

The recent advances in Next Generation Sequencing 
(NGS) technologies have facilitated the identification 
of expression QTL (eQTL) by studying the genome-
wide expression of genes across populations. Integra-
tion of eQTL analysis and GWAS in cotton have enabled 
researchers to identify the genetic regulatory networks 
that control various traits such as seedling fresh weight, 
stem length, seed germination rate, cell wall biosynthe-
sis, and the initiation of secondary cell wall develop-
ment (Han et al. 2022; Li et al. 2020; Ma et al. 2021). By 
using Genome-Wide and Transcriptome-Wide Associa-
tion Studies, Ma et  al. (2021) identified genetic factors 
responsible for male sterility in cotton under high-tem-
perature stress. Further, the application of Genomic Pre-
diction (GP) in cotton breeding has increased selection 
effectiveness while reducing breeding cost and time (Bill-
ings et al. 2022; Gapare et al. 2018). Gapare et al. (2018) 
genotyped 215 upland cotton breeding lines with 13 330 
single-nucleotide polymorphisms (SNPs) and evaluated 
them for fiber length and strength in different hot, cen-
tral, and cool regions in Australia. They then applied dif-
ferent single-site and Marker-by-Environment (M x E) 
interaction models for various fiber quality traits. The GP 
accuracy for fiber length ranged from 0.27 to 0.77, while 
for fiber strength, it ranged from 0.19 to 0.58 based on a 
single-site model. The M x E model’s prediction accuracy 
was better than that of single-site and across-site models, 
with an average accuracy of 0.71 and 0.59 for fiber length 
and strength, respectively. By identifying genotypes with 
consistent effects across different environments and 
those responsible for G x E, the M x E model may help 
cotton breeding programs reduce the phenotypic screen-
ing efforts required to identify adaptable genotypes. 

Recently, Billings et  al. (2022) conducted GWAS to 
identify markers associated with 20 fiber quality, seed 
composition, and yield traits in a panel of 80 important 
historical upland cotton lines evaluated in 14 individual 
field trials across the mid-south and southeast US cotton 
belt. They reported that combining GWAS results with 
GP can significantly improve prediction accuracies for 
various traits.

Transgenic approaches
Transgenic approaches have also been utilized to 
improve abiotic stress tolerance in cotton (Hussain and 
Mahmood 2020), including heat stress (e.g., Hozain et al. 
2012; Burke and Chen 2015; Mishra et  al. 2017; Batcho 
et  al. 2021; Esmaeili et  al. 2021). Ectopic expression of 
AtSAP5, encoding an A20/AN1 zinc finger domain-con-
taining protein, enhances drought and heat stress toler-
ance by up-regulating stress-responsive genes (Hozain 
et  al. 2012). Cotton overexpressing AtHSP101 showed 
improved pollen tube growth under heat stress compared 
with the wild cotton (Burke and Chen 2015), highlight-
ing the potential to boost crop yields in challenging cli-
mates by enhancing reproductive-stage heat tolerance. 
In another study, over-expression of the rice SUMO E3 
Ligase gene, OsSIZ1, in cotton increased net photosyn-
thesis and growth compared with non-transgenic cot-
ton and significantly improved fiber yields under abiotic 
stresses, including drought and heat (Mishra et al. 2017). 
A recent study showed that OsSIZ1/AVP1 co-over-
expressed cotton outperformed and yielded 133% and 
81% more fiber than non-transgenic cotton in the dryland 
environments of West Texas (Esmaeili et al. 2021). Simi-
larly, over-expression of AsHSP70 in cotton significantly 
reduced cell electrolyte leakage and membrane injury 
and improved membrane stability index under combined 
drought and heat stresses (Batcho et al. 2021). Recently, 
it was demonstrated that cotton plants overexpressing 
RCA​/AVP1 had a 6.5-fold increase in net photosynthetic 
rates under heat stress conditions, and a remarkable 96% 
increase in seed fiber yield as compared with wild-type 
cotton under combined drought and heat stresses (Smith 
et  al. 2023). Overall, transgenesis could be an effective 
method for developing climate resilient cotton cultivars 
with higher yield potential under warmer climates, and 
aid in addressing the demand for global fiber even under 
changing climates.

Genome editing
The advent of clustered regularly interspaced short pal-
indromic repeats and CRISPR-associated protein 9 
(CRISPR/Cas9)-mediated genome editing technology has 
opened new avenues for precise genetic modification of 
cotton traits, offering potential solutions for improving 
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heat stress tolerance. Unlike traditional transgenic tech-
nology, CRISPR/Cas9-based genome editing allows for 
the targeted modification of genes at the epigenetic and 
transcriptional levels, as well as the possibility of knock-
out or knock-in mutations (Lee et  al. 2019; Fiaz et  al. 
2021). Although both academic and industrial communi-
ties have shown interest in this technology for improving 
agriculturally important traits in cotton (Ghosh and Dey 
2022), no study has yet targeted a gene associated with 
heat stress tolerance. In general, abiotic stress-induced 
gene expression can be divided into three categories: 
(1) genes encoding proteins with known structural or 
enzymatic functions [viz., water channel proteins, key 
enzymes for osmolyte (betaine, proline, and sugars) bio-
synthesis, detoxification enzymes, and transport pro-
teins], (2) uncharacterized proteins, and (3) proteins 
with regulatory functions (involving transcription fac-
tors and signal transduction genes) (Bhatnagar-Mathur 
et al. 2008). A better understanding of the specific roles 
played by these genes could lead to more effective ways 
of enhancing heat tolerance in cotton through genome 
editing.

Abiotic stresses can cause changes in the expression 
pattern of numerous plant genes, resulting in either 
up-regulation or down-regulation. The study of cot-
ton gene expression patterns under long-term heat 
stress has shown increased expressions of TH1, IAR3, 
GhHS126, FPGS, and GhHS128 genes, while the expres-
sions of CTL2, CIPK, ABCC3, LSm8, and RPS14 genes 
were down-regulated (Demirel et  al. 2014; Tahmasebi 
et  al. 2019). The CRISPR-Cas system presents an excit-
ing opportunity to modulate these differentially regulated 
genes and mitigate the negative effects of heat stress. 
Integrating gene editing, genome sequencing, and other 
omics analyses may help to identify key genes that confer 
heat stress tolerance in cotton. As an allotetraploid, cot-
ton has numerous homologous gene pairs located in the 
A and D sub-genomes with significant single-nucleotide 
polymorphisms. Creating adenine base editors for effi-
cient and accurate A-to-G single-base editing without 
double-strand breaks in such a complex genome could be 
advantageous for functional genomics and precise cotton 
breeding under heat stress (Wang et al. 2022).

Future line of work

•	 Robust field phenotyping—Scaling of information 
generated from highly precise controlled environ-
ment chambers to field conditions using robust cus-
tom-built heat tents that continuously control and 
monitor temperature and relative humidity inside 
the tents and impose heat stress throughout critical 
developmental stages is crucial in developing heat 

tolerant cotton that can adapt to the real-world con-
ditions.

•	 Identifying heat tolerant mechanisms—The level of 
tolerance/sensitivity and the mechanisms that are 
altered under high day, high night, and combined 
high day and night temperature stresses need to be 
characterized in cotton.

•	 Management options to minimize heat stress dam-
age—The role of management options such as irriga-
tion and exogenous application of plant growth regu-
lators, compatible solutes, signaling molecules, and 
nutrients in minimizing heat stress damage needs 
further attention.

•	 Integrating genomic advances with conventional 
breeding—Genomic advances must be integrated 
with conventional breeding to accelerate genetic 
mapping, identification, and characterization of 
causal genes driving heat stress tolerance to facilitate 
genomics-assisted breeding.

Conclusions
In cotton, heat stress (≥ 35  °C) profoundly impacts 
growth, development, physiology, biochemical process, 
and overall productivity. Heat stress accelerates growth 
and promotes early maturation, reducing overall crop 
duration, thereby reducing internodal length, the  num-
ber of nodes, and sympodial branches per plant. Flower 
abortion and square and boll abscission are the major 
causes of yield loss under heat stress, which are mainly 
attributed to lower carbohydrate accumulation in these 
sink tissues. Temperatures > 30  °C induced abnormali-
ties in flower development, and reduced pollen viability, 
germination, tube growth, and pollen-pistil interaction. 
Considerably less information is available on the impacts 
of heat stress on female gametophyte development ver-
sus male reproductive organ development. Most of the 
published studies on heat stress in cotton either looked 
at the effects of HDT or combined HDT and HNT on 
yield and yield components, with less attention to HNT 
induced changes in lint yield and fiber  quality. Fiber 
quality traits are significantly affected at day/night tem-
peratures > 35/25 °C. Early stages of fiber elongation were 
more sensitive than later stages. One of the major limita-
tions to screening cotton for heat tolerance is the lack of 
robust field-based heat tents where temperature can be 
controlled and monitored. Management options includ-
ing irrigation management, altering planting date and 
plant density, and exogenous application of growth regu-
lators and nutrients contribute to minimizing heat stress-
induced damage. Recent improvements in producing 
high-quality genome sequences of domesticated diploid 
and tetraploid cotton species have offered novel insights 
into different traits contributing to heat stress tolerance. 
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A number of cutting-edge techniques, such as QTL 
mapping, GWAS, GS, genetic engineering, and genome 
editing offer great potential for developing heat-tolerant 
cotton.
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