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Abstract

Background: Gossypol found in cottonseeds is toxic to human beings and monogastric animals and is a primary
parameter for the integrated utilization of cottonseed products. It is usually determined by the techniques relied on
complex pretreatment procedures and the samples after determination cannot be used in the breeding program,
so it is of great importance to predict the gossypol content in cottonseeds rapidly and nondestructively to
substitute the traditional analytical method.

Results: Gossypol content in cottonseeds was investigated by near-infrared spectroscopy (NIRS) and high-
performance liquid chromatography (HPLC). Partial least squares regression, combined with spectral pretreatment
methods including Savitzky-Golay smoothing, standard normal variate, multiplicative scatter correction, and first
derivate were tested for optimizing the calibration models. NIRS technique was efficient in predicting gossypol
content in intact cottonseeds, as revealed by the root-mean-square error of cross-validation (RMSECV), root-mean-
square error of prediction (RMSEP), coefficient for determination of prediction (Rp

2), and residual predictive
deviation (RPD) values for all models, being 0.05∼0.07, 0.04∼0.06, 0.82∼0.92, and 2.3∼3.4, respectively. The optimized
model pretreated by Savitzky-Golay smoothing + standard normal variate + first derivate resulted in a good
determination of gossypol content in intact cottonseeds.

Conclusions: Near-infrared spectroscopy coupled with different spectral pretreatments and partial least squares
(PLS) regression has exhibited the feasibility in predicting gossypol content in intact cottonseeds, rapidly and
nondestructively. It could be used as an alternative method to substitute for traditional one to determine the
gossypol content in intact cottonseeds.
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Introducton
Cotton (Gossypium. spp) is one of the important indus-
trial and economic crops (Sunilkumar et al. 2006).
Cottonseed, the main by-product of cotton production,
can be used to produce food, animal feed, and other
products. Cottonseed contains many kinds of nutrients,
including proteins, oils, fatty acids, and amino acids,
making it a potential food resource for human beings
with the rapid growth of the global population (Sawan
et al. 2006). However, the Gossypium species are charac-
terized by the presence of gossypol, which is toxic to hu-
man beings and monogastric animals (Lordelo et al.
2005), such that the utilization of cottonseed products is
limited.
Gossypol, 1, 1′, 6, 6′, 7, 7′-hexahydroxy-5, 5′-diiso-

propyl-3, 3′-dimethyl-(2, 2′ binaphthalene)-8, 8′-dicar-
baldehyde, is a terpenoid compound that helps cotton
defend biotic stresses (Kong et al. 2010; Blanco et al.
1983). Due to the toxicity of gossypol, breeding for ei-
ther lower gossypol content in cottonseeds or higher
gossypol content in cotton plants has been practiced in
many cotton-planting countries. The cottonseed breed-
ing often requires analyzing a large number of cotton-
seed samples to measure gossypol content.
Conventionally, gossypol content is assayed by ultravio-
let (UV) spectrophotometry which not only involves re-
agents with great toxicity but also is inaccurate and
unreliable. Despite offering a high level of accuracy and
sensitivity, high-performance liquid chromatography
(HPLC) is usually costly and time-consuming. In
addition, both classical analytical methods cause un-
desired destruction of the testing samples which fre-
quently needed to be planted in a cotton breeding
program. So, a rapid and nondestructive method for
gossypol determination is required.
Near-infrared (NIR) spectroscopy combined with che-

mometrics is a rapid, convenient, and environmentally-
friendly analytical technique in the quality analysis for
crops (Sohn et al. 2008; Huang et al. 2013; Weinstock
et al. 2006; Rosales et al. 2011; Bellato et al. 2011; Bala
and Singh 2013; Hacisalihoglu et al. 2010; Mendoza
et al. 2018; Lee et al. 2017; Tierno et al. 2016; Yang and
Ren 2008; Lin et al. 2013a, 2013b; Kovalenko et al. 2006;
Fassio and Cozzolino 2004). Although the NIR calibra-
tion model for determining gossypol content in cotton
powder was developed (Li et al. 2017), it could not be
used to nondestructively analyze gossypol content in in-
tact cottonseeds, especially in breeding programs where
the genetic materials from genetic modification or cross-
breeding have limited availability. It is a challenge to de-
termine gossypol content in intact cottonseeds by NIR,
because (i) cottonseed being bigger than other crop
seeds, so large voids are left between packed samples in
sample cells; (ii) some immature and wizened

cottonseeds can be mixed in the samples, which can
introduce irrelevant information into the spectra data;
and (iii) the tough and thick shell of cottonseed can im-
pact the penetration of NIR light and result in a lower
S/N ratio and poor information. Because of these factors,
the spectral data of intact cottonseeds are far more com-
plex than that of other crop seeds, which may contain a
large amount of useless and uncorrelated information
such as noise and background. To overcome these diffi-
culties, sophisticated chemometric methods are applied
to extract useful information from NIR spectra and cali-
brate robust models for gossypol content in intact cot-
tonseeds. Essentially, these include regression methods
such as principal component regression (PCR) (Xie and
Kalivas 1997), partial least squares (PLS) (Haaland and
Thomas 1988), support vector machines (SVM) (Nie
et al. 2008), least squares support vector machines (LS-
SVM) (Shao et al. 2012), and artificial neural networks
(ANN) (Makinoa et al. 2010), coupled with spectral pre-
treatments such as standard normal variate (SNV)
(Barnes et al. 1989), Savitzky-Golay (SG) smoothing
(Savitzky and Golay 1964), multiplicative scatter correc-
tion (MSC) (Hopke 2003), and first derivate (Rinnan
et al. 2009).
Due to undesired destruction of the test sample, previ-

ous NIR models which can be used in the detection of
gossypol in cottonseed meal can be barely applied in
breeding trails (Li et al. 2017). In this present study,
spectroscopy has investigated the feasibility of analyzing
gossypol in intact cottonseeds based on NIR spectrom-
eter. The main aim of this study was to establish an opti-
mal model which could provide powerful technical
support for cotton breeders and other people who work
on cottonseeds.

Materials and methods
Samples and preparation
A total of 268 samples of cottonseeds were collected
from different growing areas, including Hangzhou
(Zhejiang, China), Xiaoshan (Zhejiang, China), Sanmen
(Zhejiang, China), Sanya (Hainan, China), Wuhu (Anhui,
China), and Yancheng (Jiangsu, China), in 2012, 2013,
and 2014. The cottonseed samples were delinted and
dried at 30 °C to constant weight. After spectral acquisi-
tion by NIR spectroscopy, the intact cottonseed samples
were dehulled and then ground to cottonseed kernel
powder for HPLC analysis. The preparations were imple-
mented in the same experimental condition in order to
reduce the influence of other physical factors.

Gossypol extraction
A sample of 0.1 g of cottonseed kernel powder was sus-
pended in 5 mL acetone and sonicated in an ultrasonic
bath for 45 min. Then, the suspension was filtered
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through quantitative filter paper followed by filtration
with a 0.45 μm syringe filter (Agela, Newark, USA). The
sediment was washed three times by acetone. After this
procedure, the extract was adjusted to 25 mL using
acetone.

HPLC analysis
HPLC analysis was performed on an Agilent 1100 HPLC
system (Agilent, Santa Clara, USA), equipped with an
auto-sampler and UV detection. A C18 column (250
mm × 4.6 mm, 5 μm, Dikma, Richmond Hill, USA) was
employed as the stationary phase. The mobile phase
consisted of methanol/0.2% H3PO4 (80/20, V/V). The in-
jection volume was 10 μL and the flow rate was 1.0
mL·min− 1. The UV detector was set at 238 nm and the
column temperature was 25 °C. Each sample was mea-
sured three times. The limit of detection (LOD) was ob-
tained at a signal-to-noise (S/N) ratio of three and the
limit of quantification (LOQ) at an S/N ratio. To detect
the stability of gossypol at room temperature, three sam-
ples were randomly employed to determine the changes
of the peak area within 36 h. HPLC-grade gossypol was
purchased from Sigma (Sigma-Aldrich, St. Louis, USA).
Methanol (HPLC grade) was procured from Tianjin
Chemical Reagent Company (Tianjin, China). Double
deionized water was prepared using Milli-Q-water puri-
fication system (Millipore, Molsheim, France).

NIR spectra acquisition
The NIR spectra of intact cottonseed samples were
scanned with a Büchi Flex-N500 NIR spectrometer
(Büchi, Flawil, Switzerland), equipped with a solid sam-
ple module as follows. The NIR spectra were collected
across the range of 4 000∼10 000 cm− 1, and were re-
corded with a spectral resolution of 4 cm− 1. Samples
were measured three times on a rotating cylinder device
at 25 ± 0.5 °C and 60% relative air humidity. All the spec-
tra were transformed into absorbance (lg (1/R)).

Spectral pretreatment
Before calibration, the spectral data were pretreated for
optimal performance. Eight pretreatment strategies
which included one or some combination of Savitzky-
Golay smoothing, SNV, MSC, and first derivate (Norris
gap) were compared with the raw spectra.

Sampling design
Samples were assigned to calibration and prediction sets
using Kennard-Stone (KS) selection (Kennard and Stone

1969). The calibration models were established with the
calibration set, and the prediction set was used to valid-
ate the predictive capabilities and analytical features of
the calibration models.

PLS regression
PLS regression has been widely used as a calibration
method to investigate the relationship between the spec-
tral and the corresponding reference data. Before cali-
bration of the PLS models, the data sets (spectral and
reference data) were analyzed using 4-fold cross-
validation to develop a full-spectra calibration model.
The aim of the cross-validation was to find the optimum
number of latent variables (LV) for PLS. The root-mean-
square error of cross-validation (RMSECV) served as a
measure to adjust the parameters, and the number of LV
which provides the lowest RMSECV was selected as the
best.

Model evaluation
The estimate of the calibration models was based on
the following quality parameters:

R2 ¼ 1−
Xn

i¼1
Ynirs−Y ref
� �2

=
Xn

i¼1
Y ref −Y ref
� �2 ð1Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

ðYnirs−Y re f Þ2=n
s

ð2Þ

RPD ¼ SDYref =RMSEP ð3Þ

where n is the total number of samples, Ynirs is the pre-
dicted value by calibration models, Yref is the reference
value by HPLC, and SD is the standard deviation.
The coefficient for determination of prediction (Rp

2),
the root mean square error of prediction (RMSEP), the
coefficient for determination of calibration (Rc

2), the
root mean square error of cross-validation (RMSECV),
and the residual predictive deviation (RPD) were used as
criteria to evaluate model performance. An acceptable
model should have high Rc

2 and Rp
2 values and low

RMSECV and RMSEP values. Meanwhile, the model is
considered robust if the RPD is higher than 2.5.

Software
NIR spectroscopic data (268 samples × 1 501 variables)
were exported in text format, organized in Micro-
soft Excel spreadsheets, and then transferred into MATL
AB R2011a (Math Works, Natick, USA) for chemomet-
ric analysis. All the algorithms in spectral pretreatments,

Table 1 HPLC-VU results

Regression equation r2 LOD/(μg·mL− 1) LOQ/(μg·mL− 1) Average recovery/%

y = 102.42x - 85.055 0.999 37.5 125.0 95.16∼101.72

r2 correlation coefficient, LOD limits of detection, LOQ limits of quantification, y peak area, x concentration (μg·mL− 1)
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sampling design and regressions were implemented with
MATLAB R2011a.

Results
HPLC analysis
The regression equation, correlation coefficient (r2),
limits of detection (LOD), limits of quantification
(LOQ), and an average recovery of gossypol were illus-
trated in Table 1. The retention time of gossypol stand-
ard and gossypol extractions was 9.91 and 9.60 min,
respectively (Fig. 1). Table 2 shows the stability for
the peak area of gossypol determined by HPLC for 24 h.
All the results indicated that the improved HPLC
method could be used to detect gossypol content, and
the cottonseed extract should be analyzed within 24 h.

NIR spectra analysis
Across the spectral range of 4 000∼10 000 cm− 1, the ab-
sorbance values are mainly associated with the combin-
ation and overtone bands of the C-H, N-H, O-H, and S-
H bonds (Macho and Larrechi 2002), which were quite
sensitive to the compositional variations in complex

samples. Figure 2a shows the raw intact cottonseed spec-
tra in the NIR spectral region. The spectra showed six
broad absorption peaks around the 4 200, 4 700, 5 150,
5 580, 6 900, and 8 400 cm− 1, respectively. The small
peak observed at 4 200 cm− 1 fell within the regions asso-
ciated with the combination bands of C-H. At 5 150 and
6 900 cm− 1, these could be attributed to the combin-
ation and the first overtone bands of O-H, respectively,
which were identified as water absorption. The gentle
peaks at 5 580 and 8 400 cm− 1 overlapped with the sec-
ond and first C-H overtone regions, respectively. It was
worth mentioning that the peak at 4 700 cm− 1 was at-
tributed to the first C-H combination bands of alkenes
and aromatic hydrocarbons, which could be identified as
the absorption of polyphenolic terpenes, including gossy-
pol and its derivatives.
The raw spectra were homogeneous, so the presence

of noise could not be directly identified. Consistent base-
line offsets and biases were present in the spectra, which
are common features in the NIR spectra. Hence, eight
pretreatment strategies were performed to optimize the
raw spectra before the establishment of the calibration

Fig. 1 Chromatograms of a gossypol standard and b gossypol extract in intact cottonseeds

Table 2 The stability of gossypol determined for HPLC during 24 h

Sample
number

Time/h RSD/
%0 3 6 9 12 15 18 21 24

1 2 378.8 2 398.0 2 397.9 2 435.2 2 414.2 2 421.1 2 428.1 2 452.7 2 465.3 1.14

2 2 871.7 2 848.1 2 860.2 2 885.0 2 876.6 2 886.2 2 932.9 2 939.8 3 010.5 1.76

3 2 854.8 2 839.8 2 862.2 2 892.6 2 888.7 2 918.6 2 965.1 2 972.7 3 007.1 2.01

RSD relative standard deviation
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Fig. 2 The NIR spectra of intact cottonseeds. a the raw spectra, b the spectra pretreated by MSC, c the spectra pretreated by SNV+ first derivate,
and d the spectra of pretreated by SG smoothing+ SNV+ first derivate
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models. The pretreatment spectra of several types of
representative strategies were shown in Fig. 2b, c, and d.
To different degrees, all these pretreatments could re-
duce the physical change among samples due to scatter-
ing and remove both additive and multiplicative effects
in the spectra. It was noted that ten variables were lost
after SG smoothing. Hence, the 1 491 variables were
used for calibration among the models using SG
smoothing during the spectral pretreatments.

Kennard-Stone sampling design
The Kennard-Stone algorithm is an effective method for
extracting a sample subset in the multidimensional
space, which includes all the most diverse samples and
enables the selection of a subset of representative sam-
ples. Therefore, it has been confirmed that the calibra-
tion set extracted using KS selection has a better
predictive capability than a set randomly built or con-
structed by other data selection methods such as Koho-
nen self-organized mapping (Kohonen 1982) or D-
optimal designs (de Aguiar et al. 1995). In this study, the
total of 268 intact cottonseed samples were divided into
calibration and prediction sets based on KS algorithm,
with the former set consisting of 218 samples and the
latter 50 samples. The statistical values of gossypol con-
tents in all cottonseed samples for calibration and

prediction set were demonstrated in Table 3, which indi-
cated that the range of variation for gossypol content
was broad enough to develop NIR calibration models.

PLS regression
The calibration models of gossypol content in intact cot-
tonseeds based on PLS regression were established in
the NIR spectral range of 4 000∼10 000 cm− 1, and the
results were summarized in Table 4. The number of LV
was selected with the aid of cross-validation using the
first minimum RMSECV for all models. The RMSECV
and RMSEP values for all the calibration models were
between 0.05∼0.07 and 0.04∼0.06 for calibration and pre-
diction sets, respectively. The values of Rp

2 and Rc
2

ranged from 0.82 to 0.93 and from 0.87 to 0.97, respect-
ively. The RPD values ranged from 2.3 to 3.4.

Discussion
Since NIR spectra of intact cottonseeds were complex
and overlapped, suitable spectral pretreatments should
be used to optimize the NIR spectra and extract the ef-
fective information. In this work, the raw spectra were
transformed using eight pretreatment strategies, includ-
ing single pretreatment strategies (SG smoothing, SNV,
MSC, and first derivate), two pretreatments strategies
(SNV + first derivate and MSC + first derivate), and three
pretreatments strategies (SG smoothing + SNV + first
derivate and SG smoothing + MSC + first derivate). In
the analyzing of the results obtained from single pre-
treatment strategies, the PLS model using eight latent
variables based on the application of MSC produced bet-
ter results with low values of RMSECV and RMSEP
(0.06 and 0.05, respectively), and the RPD value was in-
creased by 20.36% compared with that of the direct re-
gression model based on raw spectra (Fig. 3). Figure 4b
showed the correlation of the model using MSC, pre-
sented by plotting predicted and reference values for
gossypol content in intact cottonseeds. The samples near
the diagonal line indicated that their predicted values
were more closed to reference ones and vice versa. In
the aspect of two pretreatments strategies, the calibra-
tion model based on SNV + first derivate presented a
better predictive ability than that on MSC + first deriv-
ate, with the Rc

2 and Rp
2 values of 0.962 and 0.887, re-

spectively. The RPD value of that model was 3.0,
increased by 28.14% compared with the model using raw

Table 3 Statistical values of gossypol content for calibration and prediction set samples

Data sets n Minimum/(g·kg−1) Maximum/(g·kg−1) Mean/(g·kg−1) SD

Calibration set 218 0.32 1.04 0.63 0.16

Prediction set 50 0.35 0.95 0.65 0.15

All samples 268 0.32 1.04 0.64 0.16

n number of samples, SD standard deviation

Table 4 Performance comparison results for calibration models
using different spectral pretreatment strategies

Spectral
pretreatments

LVs Calibration set Prediction set

RMSECV Rc
2 RMSEP Rp

2 RPD

Raw 9 0.06 0.94 0.06 0.82 2.3

SG 9 0.07 0.87 0.06 0.86 2.5

SNV 10 0.06 0.92 0.05 0.87 2.8

MSC 8 0.06 0.92 0.05 0.88 2.8

1st D 9 0.05 0.95 0.05 0.87 2.7

SNV + 1st D 10 0.06 0.96 0.05 0.89 3.0

MSC + 1st D 9 0.06 0.96 0.05 0.88 2.9

SG + SNV + 1st D 9 0.05 0.97 0.04 0.92 3.4

SG +MSC + 1st D 10 0.05 0.96 0.05 0.89 3.0

LVs latent variables, RMSECV root mean square error of cross-validation, Rc
2

coefficient of determination of calibration, RMSEP root mean square error of
prediction, Rp

2 coefficient of determination of prediction, RPD residual
predictive deviation, Raw raw spectra, SG Savitzky-Golaysmoothing, SNV
standard normal variate, MSC multiplicative scatter correction, 1st D
first derivate
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Fig. 3 The residual predictive deviation (RPD) for PLS models based on different pretreatment strategies compared with the model using raw spectra

Fig. 4 The correlation between predicted and reference values for models of intact cottonseeds. a the PLS model based on raw spectra, b the
PLS model based on the pretreatment of MSC, c the PLS model based on the pretreatment of SNV+ first derivate, and d the PLS model based on
the pretreatment of SG smoothing+ SNV+ first derivate
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spectra. From all the results of calibration models estab-
lished, the best model was the one that pretreated using
the strategy of SG + SNV + first derivate, and it had the
highest Rc

2 (0.97) and Rp
2 (0.93), and the RPD (3.4) in-

creased by 46.28% compared with that of the raw spec-
tral model. Furthermore, RMSECV (0.05) and RMSEP
(0.04) were the lowest among all the models. The correl-
ation plots between the predicted and reference values
were focused on the diagonal line (Fig. 4d). It was indi-
cated that the model using SG + SNV + first derivate and
PLS was accurate and robust enough to substitute the
conventional gossypol analysis methods (HPLC) to
measure gossypol in intact cottonseeds.
The NIR spectra of these intact seeds generally con-

tained a mass of undesirable features, including noise,
overlapping peaks, baseline effects, and some systematic
behaviors, caused by the seed size, shell and some other
physical factors. Hence, a suitable pretreatment strategy
was required for the widespread application of NIR tech-
nology in crop seed analysis. In this work, it was indi-
cated that an advisable pretreatment strategy before
regression was important to refine the effective informa-
tion from spectral data and eliminate spectral deviation
to calibrate an accurate and robust NIR model.
The calibration models reported here confirmed the

feasibility of the use of NIR technology for rapid and
nondestructive determination of gossypol, an important
parameter to cottonseed products, in intact cottonseeds
for the first time. The high RPD values (3.4) suggested
that this technology could be an effective method for the
measurement of gossypol in intact cottonseeds. The op-
timal model could substitute conventional analysis
methods for gossypol, including UV spectrophotometry
and HPLC. Because of the potential of high sample
throughput and low costs, as well as a significant reduc-
tion in toxic chemicals, the application of NIR method
could be encouraged and popularized to other similar
agricultural products.

Conclusions
The calibration and validation statistics obtained in the
current work showed the potential of NIRS to predict
microelement gossypol content in intact cottonseeds.
The optimized model was that pretreated by Savitzky-
Golay smoothing + standard normal variate + first deriv-
ate, with RMSECV, RMSEP, Rp

2, and RPD of 0.05, 0.04,
0.92, and 3.4, respectively, which provided a method to
determine gossypol content in intact cottonseeds
feasibly.

Acknowledgments
We are grateful to Mrs. Yu Liu for her technical assistance.

Authors’ contributions
Li C (Cheng) and Zhu SJ designed the experiments and wrote the
manuscript. Li C (Cheng), Zhao TL and Su BS analyzed the data, Li C (Cheng),
Su BS, Li C (Cong) participated in the experiment. Chen JH assisted in editing
the article. Zhu SJ and Chen JH conducted and supervised the experiments.
The author(s) read and approved the final manuscript.

Funding
The research work was funded by The National Key Technology R&D
Program of China (2016YFD0101404), China Agriculture Research System
(CARS-18-25), and Jiangsu Collaborative Innovation Center for Modern Crop
Production.

Availability of data and materials
All relevant data are within this article.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
All co-authors have consent for submission of manuscript.

Competing interests
The authors declare that they have no competing interests.

Author details
1Hainan Institute, Zhejiang University, Sanya 572025, China. 2Lingnan
Guangdong Laboratory of Modern Agriculture, Genome Analysis Laboratory
of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen,
Chinese Academy of Agricultural Science, Shenzhen 518124, Guangdong,
China. 3Department of Agronomy, Zhejiang Key Laboratory of Crop
Germplasm, Zhejiang University, Hangzhou 310058, China.

Received: 4 August 2020 Accepted: 2 April 2021

References
Bala M, Singh M. Non-destructive estimation of total phenol and crude fiber

content in intact seeds of rapeseed–mustard using FTNIR. Ind Crop Prod.
2013;42:357–62. https://doi.org/10.1016/j.indcrop.2012.06.014.

Barnes R, Dhanoa M, Lister S. Standard normal variate transformation and de-
trending of near-infrared diffuse reflectance spectra. Appl Spectrosc. 1989;
43(5):772–7. https://doi.org/10.1366/0003702894202201.

Bellato S, Frate DV, Redaelli R, et al. Use of near infrared reflectance and
transmittance coupled to robust calibration for the evaluation of nutritional
value in naked oats. J Agric Food Chem. 2011;59(9):4349–60. https://doi.org/1
0.1021/jf200087y.

Blanco A, Aoki A, Montamat E, et al. Effect of gossypol upon motility and
ultrastructure of Trypanosoma cruzi. J Protozool. 1983;30(4):649–51. https://
doi.org/10.1111/j.1550-7408.1983.tb05337.x.

de Aguiar PF, Bourguignon B, Khots MS, et al.. D-optimal designs. Chemom Intell
Lab Syst. 1995;30(2):199–210. https://doi.org/10.1016/0169-7439(94)00076-X.

Fassio A, Cozzolino D. Non-destructive prediction of chemical composition in
sunflower seeds by near infrared spectroscopy. Ind Crop Prod. 2004;20(3):
321–9. https://doi.org/10.1016/j.indcrop.2003.11.004.

Haaland MD, Thomas VE. Partial least-squares methods for spectral analyses. 1.
Relation to other quantitative calibration methods and the extraction of
qualitative informaton. Anal Chem. 1988;60(11):1193–202. https://doi.org/10.1
021/ac00162a020.

Hacisalihoglu G, Larbi B, Settles A. Near-infrared reflectance spectroscopy predicts
protein, starch, and seed weight in intact seeds of common bean (Phaseolus
vulgaris L.). J Agric Food Chem. 2010;58:702–6. https://doi.org/10.1021/jf901
9294.

Hopke H. The evolution of chemometrics. Anal Chim Acta. 2003;500(1-2):365–77.
https://doi.org/10.1016/S0003-2670(03)00944-9.

Huang ZR, Sha S, Rong ZQ, et al. Feasibility study of near infrared spectroscopy
with variable selection for non-destructive determination of quality
parameters in shell-intact cottonseed. Ind Crop Prod. 2013;43:654–60. https://
doi.org/10.1016/j.indcrop.2012.08.015.

LI et al. Journal of Cotton Research            (2021) 4:13 Page 8 of 9

https://doi.org/10.1016/j.indcrop.2012.06.014
https://doi.org/10.1366/0003702894202201
https://doi.org/10.1021/jf200087y
https://doi.org/10.1021/jf200087y
https://doi.org/10.1111/j.1550-7408.1983.tb05337.x
https://doi.org/10.1111/j.1550-7408.1983.tb05337.x
https://doi.org/10.1016/0169-7439(94)00076-X
https://doi.org/10.1016/j.indcrop.2003.11.004
https://doi.org/10.1021/ac00162a020
https://doi.org/10.1021/ac00162a020
https://doi.org/10.1021/jf9019294
https://doi.org/10.1021/jf9019294
https://doi.org/10.1016/S0003-2670(03)00944-9
https://doi.org/10.1016/j.indcrop.2012.08.015
https://doi.org/10.1016/j.indcrop.2012.08.015


Kennard RW, Stone LA. Computer aided design of experiments. Technometrics.
1969;11(1):137–48. https://doi.org/10.2307/1266770.

Kohonen T. Analysis of a simple self-organizing process. Biol Bybernetics. 1982;
44(2):135–40. https://doi.org/10.1007/BF00317973.

Kong GC, Daud KM, Zhu SJ. Effects of pigment glands and gossypol on growth,
development and insecticide-resistance of cotton bollworm (Heliothis
armigera (Hübner)). Crop Prot. 2010;29(8):813–9. https://doi.org/10.1016/j.
cropro.2010.03.016.

Kovalenko VI, Rippke RG, Hurburgh RC. Determination of amino acid composition
of soybeans (Glycine max) by near-infrared spectroscopy. J Agric Food Chem.
2006;54(10):3485–91. https://doi.org/10.1021/jf052570u.

Lee H, Kim M, Song Y, et al. Non-destructive evaluation of bacteria-infected
watermelon seeds using visible/near-infrared hyperspectral imaging. J Sci
Food Agric. 2017;97(4):1084–92. https://doi.org/10.1002/jsfa.7832.

Li C, Zhao TL, Li C, et al. Determination of gossypol content in cottonseeds by
near infrared spectroscopy based on Monte Carlo uninformative variable
elimination and nonlinear calibration methods. Food Chem. 2017;221:990–6.
https://doi.org/10.1016/j.foodchem.2016.11.064.

Lin C, Chen X, Jian L, et al. Determination of grain protein content by near-
infrared spectrometry and multivariate calibration in barley. Food Chem.
2013a;162:10–5. https://doi.org/10.1016/j.foodchem.2014.04.056.

Lin TS, Schinazi RF, Zhu JL, et al. Anti-Hiv-1 activity and cellular pharmacology of
various analogs of gossypol. Biochem Pharmacol. 2013b;46(2):251–5. https://
doi.org/10.1016/0006-2952(93)90411-O.

Lordelo MM, Davis AJ, Calhoun MC, et al. Relative toxicity of gossypol
enantiomers in broilers. Poult Sci. 2005;84(9):1376–82. https://doi.org/10.1093/
ps/84.9.1376.

Macho S, Larrechi MS. Near-infrared spectroscopy and multivariate calibration for
the quantitative determination of certain properties in the petrochemical
industry. Trends Anal Chem. 2002;21(12):799–806. https://doi.org/10.1016/S01
65-9936(02)01202-5.

Makinoa Y, Ichimura M, Oshita S, et al. Estimation of oxygen uptake rate
of tomato (Lycopersicon esculentum Mill.) fruits by artificial neural
networks modelled using near-infrared spectral absorbance and fruit
mass. Food Chem. 2010;121:533–9. https://doi.org/10.1016/j.foodchem.2
009.12.043.

Mendoza AF, Cichy AK, Sprague C, et al. Prediction of canned black bean texture
(Phaseolus vulgaris L.) from intact dry seeds using visible/near-infrared
spectroscopy and hyperspectral imaging data. J Sci Food Agric. 2018;98:283–
90. https://doi.org/10.1002/jsfa.8469.

Nie Z, Han J, Liu T, Liu X. Hot topic: application of support vector machine
method in prediction of alfalfa protein fractions by near infrared
reflectance spectroscopy. J Dairy Sci. 2008;91(6):2361–9. https://doi.org/1
0.3168/jds.2008-0985.

Rinnan Å, van den Berg F, Engelsen SB. Review of the most common pre-
processing techniques for near-infrared spectra. Trends Anal Chem. 2009;
28(10):1201–22. https://doi.org/10.1016/j.trac.2009.07.007.

Rosales A, Galicia L, Oviedo E, et al. Near-infrared reflectance spectroscopy (NIRS)
for protein, tryptophan, and lysine evaluation in quality protein maize (QPM)
breeding programs. J Agric Food Chem. 2011;59(20):10781–6. https://doi.
org/10.1021/jf201468x.

Savitzky A, Golay M. Smoothing and differentiation of data by simplified least
squares procedures. Anal Chem. 1964;36(8):1627–39. https://doi.org/10.1021/a
c60214a047.

Sawan MZ, Hafez AS, Basyony EA, et al. Cottonseed, protein, oil yields and oil
properties as affected by nitrogen fertilization and foliar application of
potassium and a plant growth retardant. World J Agric Sci. 2006;1(6):56–65.
https://doi.org/10.1007/BF02544517.

Shao YN, Zhao CJ, Bao YD, He Y. Quantification of nitrogen status in rice by
least squares support vector machines and reflectance spectroscopy.
Food Bioprocess Technol. 2012;5(1):100–7. https://doi.org/10.1007/s11947-
009-0267-y.

Sohn M, Himmelsbach SD, Barton EF, et al. Near-infrared analysis of whole kernel
barley: comparison of three spectrometers. Appl Spectrosc. 2008;62(4):427–
32. https://doi.org/10.1366/000370208784046768.

Sunilkumar G, Campbell CL, Puckhaber L, et al. Engineering cottonseed for use in
human nutrition by tissue-specific reduction of toxic gossypol. Proc Natl
Acad Sci. 2006;103(48):18054–9. https://doi.org/10.1073/pnas.0605389103.

Tierno R, López A, Riga P, et al. Phytochemicals determination and classification
in purple and red fleshed potato tubers by analytical methods and near

infrared spectroscopy. J Sci Food Agric. 2016;96(6):1888–99. https://doi.org/1
0.1002/jsfa.7294.

Weinstock A, Janni J, Hagen L, et al. Prediction of oil and oleic acid
concentrations in individual corn (Zea mays L.) kernels using near-infrared
reflectance hyperspectral imaging and multivariate analysis. Appl Spectrosc.
2006;60:9–16. https://doi.org/10.1366/000370206775382631.

Xie YL, Kalivas HJ. Local prediction models by principal component regression.
Anal Chim Acta. 1997;348(1-3):29–38. https://doi.org/10.1016/S0003-2
670(97)00036-6.

Yang N, Ren QX. Application of near-infrared reflectance spectroscopy to the
evaluation of rutin and d-chiro-inositol contents in tartary buckwheat. J Agric
Food Chem. 2008;56(3):761–4. https://doi.org/10.1021/jf072453u.

LI et al. Journal of Cotton Research            (2021) 4:13 Page 9 of 9

https://doi.org/10.2307/1266770
https://doi.org/10.1007/BF00317973
https://doi.org/10.1016/j.cropro.2010.03.016
https://doi.org/10.1016/j.cropro.2010.03.016
https://doi.org/10.1021/jf052570u
https://doi.org/10.1002/jsfa.7832
https://doi.org/10.1016/j.foodchem.2016.11.064
https://doi.org/10.1016/j.foodchem.2014.04.056
https://doi.org/10.1016/0006-2952(93)90411-O
https://doi.org/10.1016/0006-2952(93)90411-O
https://doi.org/10.1093/ps/84.9.1376
https://doi.org/10.1093/ps/84.9.1376
https://doi.org/10.1016/S0165-9936(02)01202-5
https://doi.org/10.1016/S0165-9936(02)01202-5
https://doi.org/10.1016/j.foodchem.2009.12.043
https://doi.org/10.1016/j.foodchem.2009.12.043
https://doi.org/10.1002/jsfa.8469
https://doi.org/10.3168/jds.2008-0985
https://doi.org/10.3168/jds.2008-0985
https://doi.org/10.1016/j.trac.2009.07.007
https://doi.org/10.1021/jf201468x
https://doi.org/10.1021/jf201468x
https://doi.org/10.1021/ac60214a047
https://doi.org/10.1021/ac60214a047
https://doi.org/10.1007/BF02544517
https://doi.org/10.1007/s11947-009-0267-y
https://doi.org/10.1007/s11947-009-0267-y
https://doi.org/10.1366/000370208784046768
https://doi.org/10.1073/pnas.0605389103
https://doi.org/10.1002/jsfa.7294
https://doi.org/10.1002/jsfa.7294
https://doi.org/10.1366/000370206775382631
https://doi.org/10.1016/S0003-2670(97)00036-6
https://doi.org/10.1016/S0003-2670(97)00036-6
https://doi.org/10.1021/jf072453u

	Abstract
	Background
	Results
	Conclusions

	Introducton
	Materials and methods
	Samples and preparation
	Gossypol extraction
	HPLC analysis
	NIR spectra acquisition
	Spectral pretreatment
	Sampling design
	PLS regression
	Model evaluation
	Software

	Results
	HPLC analysis
	NIR spectra analysis
	Kennard-Stone sampling design
	PLS regression

	Discussion
	Conclusions
	Acknowledgments
	Authors’ contributions
	Funding
	Availability of data and materials
	Declarations
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References

